

National Award for Excellence in Energy Management-2023 Hero MotoCorp Ltd.-Vadodara

Presenter:

- 1. Debashish Nayak (HOD-Maintenance & Utility)
- 2. Saroj Behera (Section Head-Utility)
- 3. Akshay Beejawat (Team Manager-Business Excellence)

13th Sept 2023

Privileged & Confidential

Content

- Brief Introduction on Company/Unit
- Manufacturing Process
- Sp. Energy Consumption in last 3 years (FY 20-21 to FY 22-23)
- Benchmarking Study
- Energy Saving projects implemented in the last three years
- Innovative Projects implemented
- Utilisation of Renewable Energy sources
- Waste utilization and management
- GHG Inventorisation
- Green Supply Chain Management
- EMS System and other requirements
- NET ZERO commitment

Leadership Commitment toward Sustainability

Vision

Mission

Create

- Redefine mobility through creation of mobility roadmap
- Set best practices and benchmark for the industry

Collaborate

- Leverage partnership and exhibit teamwork
- Co-create solutions that benefit the community, while caring for both the internal and external environment eco systems and support sustainability

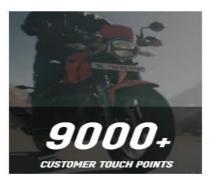
Inspire

- Move forward with purpose
- Inspire our colleagues, customers and communities.
- Thrive on the local and global stage

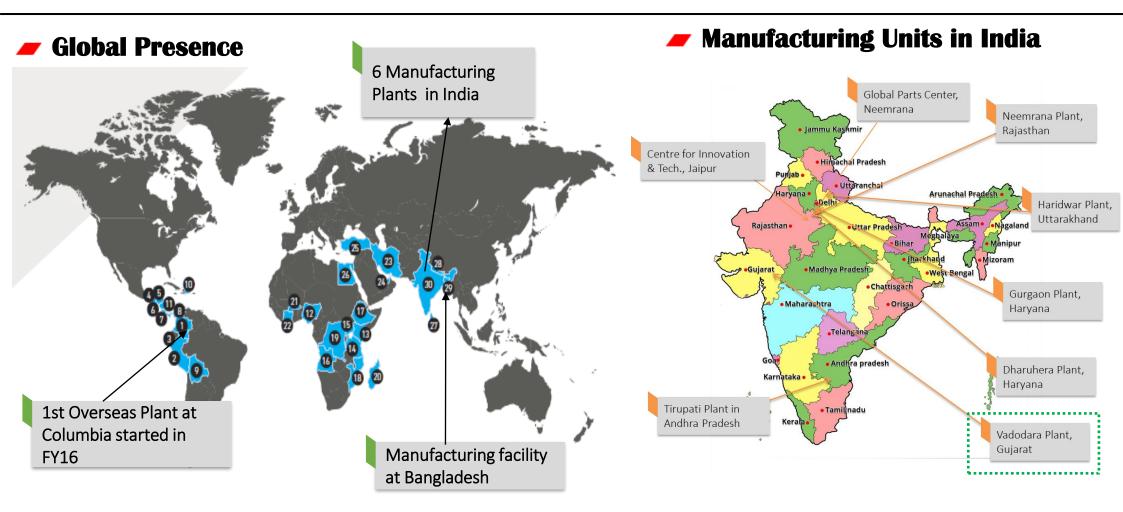
Hero MotoCorp is highly committed to sustainability initiatives with its vision of "Be the future of mobility" and mission to Create, Collaborate and Inspire, and follow its values at all its level.

Product Range

Milestones


Manufacturing Happiness Since 1985

With Innovation at its core, Hero MotoCorp continues to provide mobility to the aspirations of millions around the world.



37+
YEARS OF EXCELLENT SERVICE

With a wide product range from 100CC to premium segments and innovation at its core, HMCL continues to provide mobility to the aspirations of millions around the world. We have 110 Mn + Satisfied customers and Number 1 Two wheeler manufacturer for more than the last two decades.

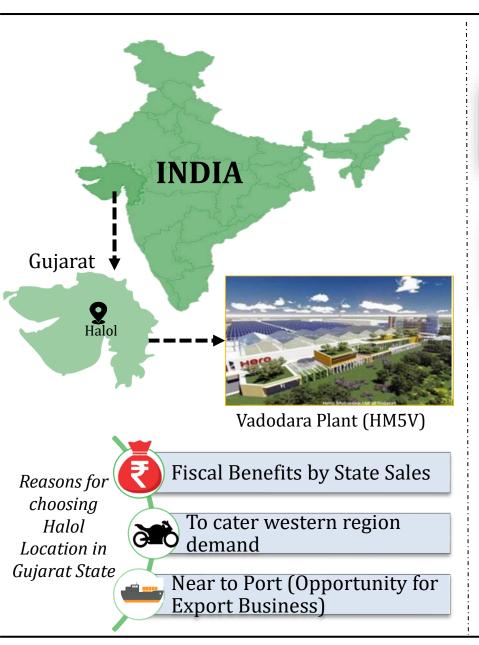
47 Countries

Worldwide Presence 3.2%

Share of international sales

\$ 14.2 Million

Revenue from GB Parts Business **16**


New Products & refreshes

32%

Contribution from premium segment to international sales

With Worldwide presence in 47 Countries, a 3.2% share of International sales, and 16 New Products & refreshes lined up, HMCL has 32% contribution from the premium segment to international sales.

Products

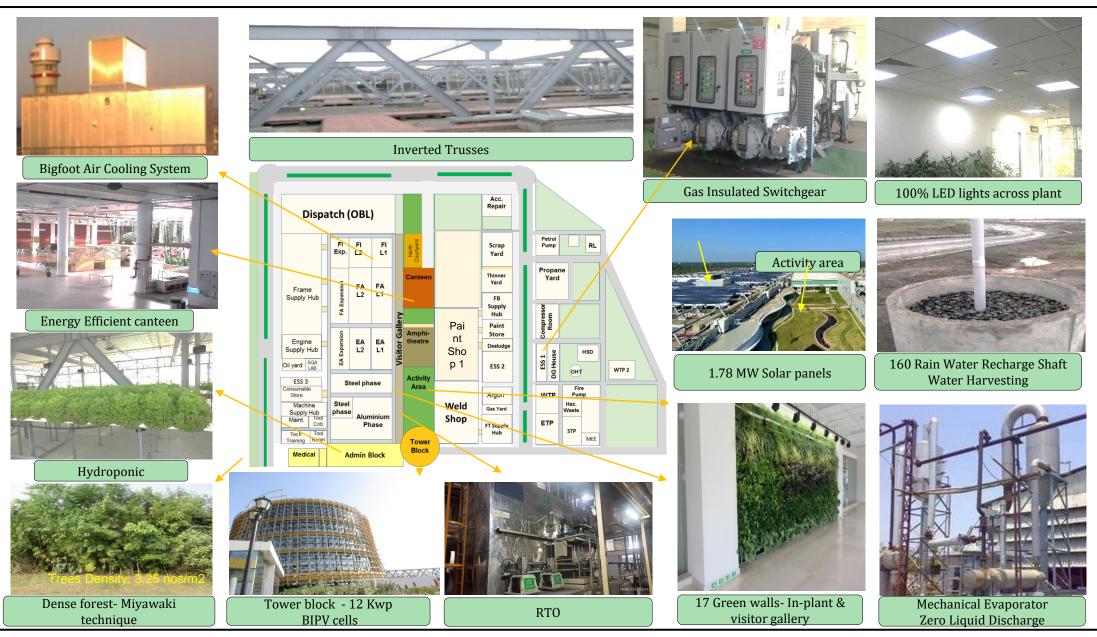
Splendor Plus

HF Deluxe

Hunter Export BSIV

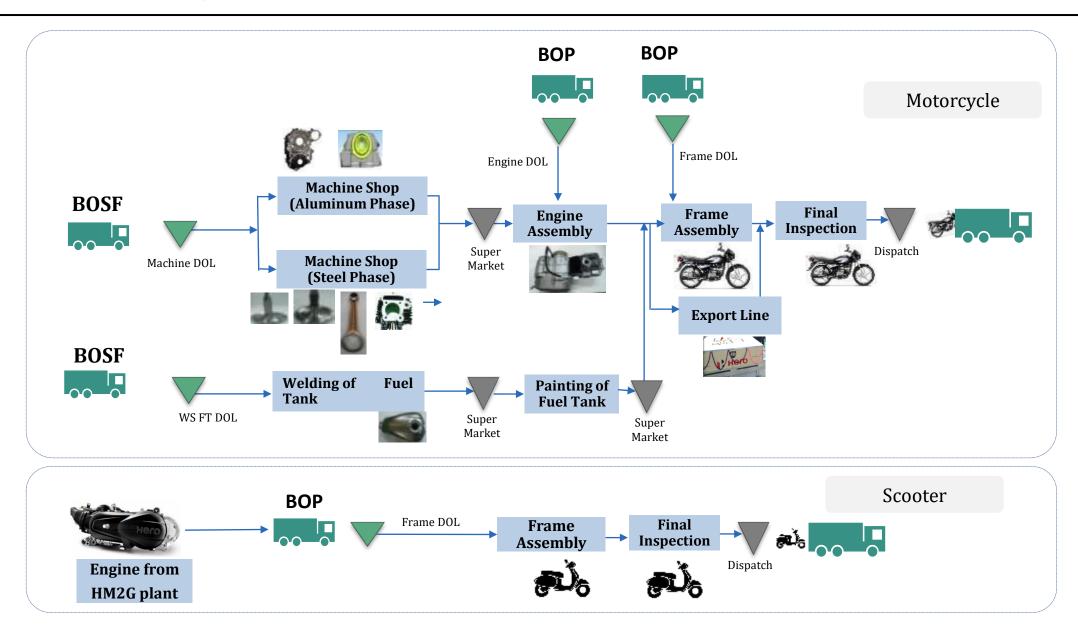
Passion X-Tech

Pleasure


Super Splendor

Key Highlights

- Total Plot Size 187 acre (7.5 lakh Sq. Mt.)
- Designed by William Mc Donough (Cradle to Cradle Designer)
- Plant Capacity- 4000 VPD (Expandable up to 6000 VPD)
- Flexible lines for scooter & and motorcycle production
- Provisions for making it an export hub
- 2000+ employment
- Gender Diversity- 16 %


HM5V Plant location is chosen to get fiscal benefits, cater to the western region demand of country and business opportunities in Global market. The plant is manufacturing the highest selling models of 100 CC and Export CKD/SKD Hunter Model. The plant is built on the lines of Sustainability.

HM5V plant is equipped with various unique facilities in terms of infrastructure, Green initiatives and technologies like Hydroponics, Big Foot, Green Walls, Energy efficient offices, water harvesting shafts, etc.

There are 7 components which are machined and 1 component fuel tank which goes through process of welding and painting. After machining & painting, assembly of engine & vehicle is done.

Energy Policy

Hero

Energy Policy

We at Hero MotoCorp Ltd are committed to demonstrate excellence in our energy performance on a continual basis, as an intrinsic element of our corporate policy.

To achieve this, we commit ourselves to

- Integrate energy considerations and cleaner production in all our business processes and practices.
- Continue production innovation to improve energy efficiency
- Comply with all applicable legal and other requirements and also controlling our conventional energy usage through the principles of "ALARA" (as low as reasonably achievable) and increasing the share of renewable energy.
- Reduction in Energy use and consumption and increase in energy efficiency of the equipment.
- Support design activities that consider energy performance improvement.
- To ensure the availability of Information and necessary resources to achieve energy targets.
- Enhance energy awareness of our employees and dealers/vendors, while promoting their involvement in ensuring sound energy management.
- Supporting the procurement of energy-efficient products and services that affect energy performance.
- We shall communicate this policy to all our employees and would make it available to interested parties.

Vikram S Kasbekar Executive Director

Successful Energy Management

IMS Awareness

Technical

Ability

- Integrate Energy consideration & Cleaner Production.
- Innovation to improve energy Efficiency
- Comply legal requirements
- o Principle of ALARA
- Reduction in Energy Use & Consumption
- Increase in Energy Efficiency
- Availability of Information & Resources
- Enhance Awareness
- Procurement of Energy Efficient Products
- Communication of Policy

Management

Support

Energy Management Cell

Head

Energy

Manager

SHE Head

Review

Monthly Review

Daily Review

Role

Project Planning & Implementation

Idea Generator
Project Implementer
Employee Awareness
Technology Evaluator
Evaluating Energy
Performance
Recognize Achievement

Energy Performance Management

Excellent Energy Unit

Production

Head

Pillars of Energy Management

Energy Efficiency Improvement

HR Head

Loss Elimination
Equipment Efficiency
Improvement
Evaluating Energy
Performances

Energy Use Optimization

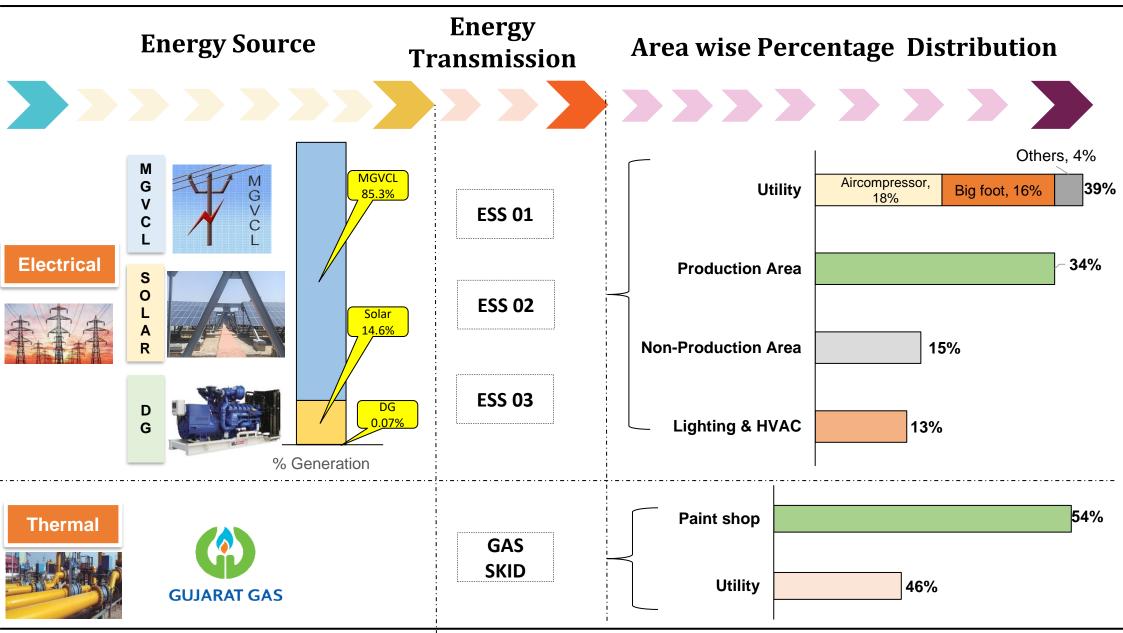
Maximizing System
Efficiencies
Energy Mode
Optimization

Energy Consumption Reduction

Optimizing Input Energy
Requirements
TPM Implementation
RCT Projects Implementation

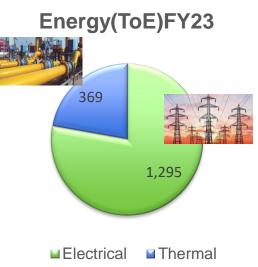
Renewable Energy

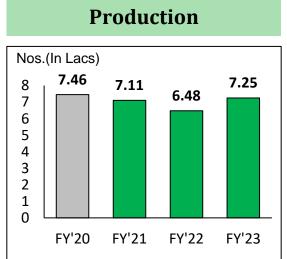
Hybrid Power Utilization Efficiency Improvement of Existing System

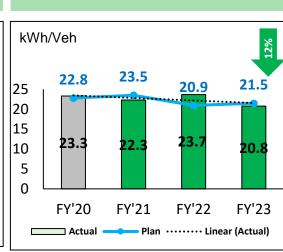

Total Employee Involvement

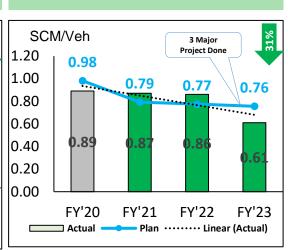
The plant is driven by Energy Policy and Pillars of Energy Management. Energy Management Cells with defined roles and review helps to achieve Energy Performance management and achieve the aim of Excellent Energy Unit.

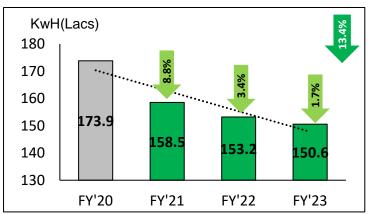
Monitoring


System

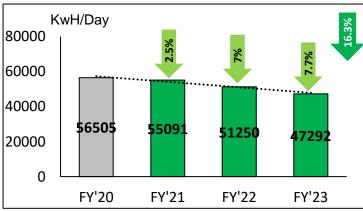



Electrical Power sources are Grid power, solar power, and DG(kept as backup). These energy sources are transferred to shops through ESS. Natural gas is transferred through a gas skid to use in Paint shop & Utility.

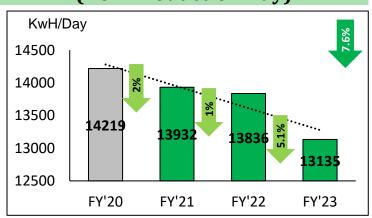

Specific Energy Consumption in the last 3 years



Electrical SEC

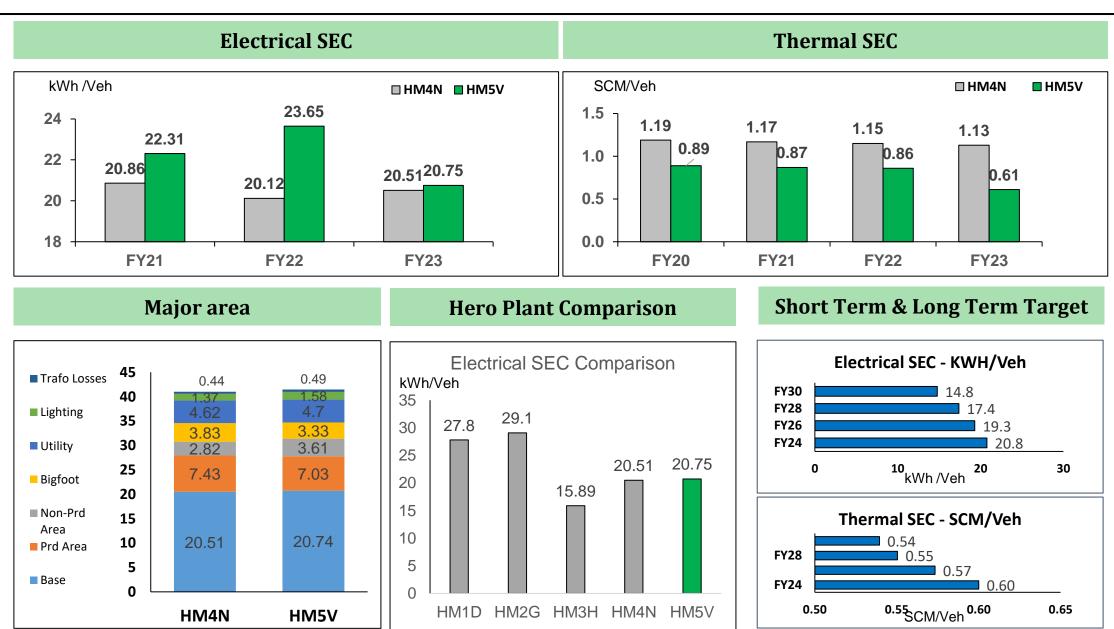


Thermal SEC


Kwh Consumption

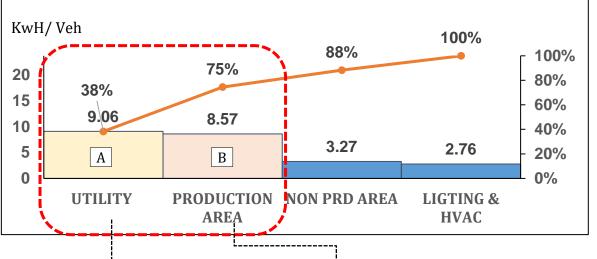
(Production Day)

Power Consumption (Non-Production Day)

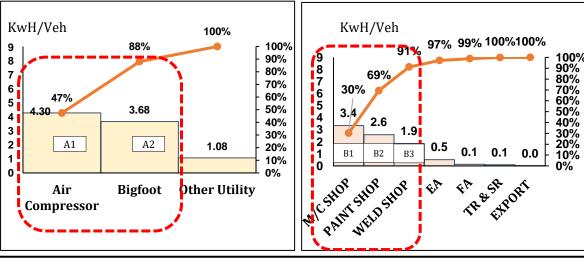

13.4% Reduction in Overall Plant Kwh

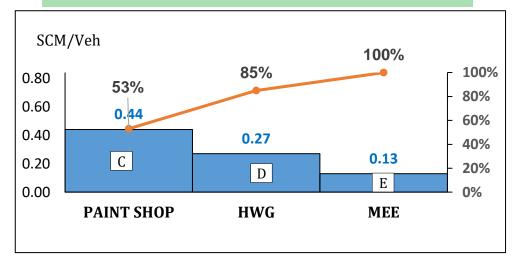
16% Reduction in Working Day Kwh and 7.6% reduction in Non-Working Day

Electrical and thermal consumption has been reduced throughout the years and Power consumption on production and Non-production days are also tracked.


Benchmarking Study

Vadodara Plant took Neemrana Plant as a benchmark to improve in FY21 due to similarity in operation and capacity. Improvement has been done to reach the comparable level





Production Power Utility Energy Consumption:

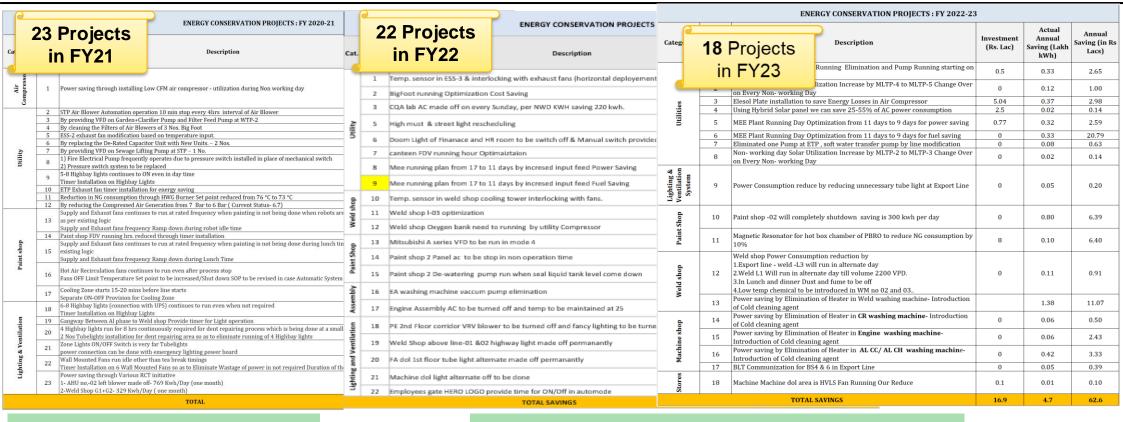
Consumption: FY22

Area wise Thermal Energy Consumption: FY22

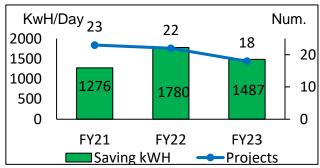
Major projects Identified based on Energy Consumption in

- Air Compressor
- **Big Foot**
- Machine Shop
- **Paintshop**
- Weld shop
- Hot water generator
- MEE

In a similar way, Projects were identified at the start of each years for energy performance improvement


Comprehensive energy analyses are performed annually, and actions are planned to minimize the energy usage of key contributors.

FY22


Energy Saving projects implemented in last three years

Summary

Energy Saving Projects

Energy Saving Projects summary Last 3 years

)	Year	Investment In Lacs	No of Project	Kwh Saving In Lacs	Cost Saving In Lacs	<u>"ZERO"</u> Investment Project
	2020-21	2.73	23	2.4	19.5	16
	2021-22	0.762	22	6.3	61.2	18
	2022-23	16.91	18	4.7	62.6	11

Through analysis and RCT participation throughout the years, we have completed 63 Projects with 13.4 Lacs kWh savings in the last 3 years.

Energy Saving projects implemented in last three years

Top Projects

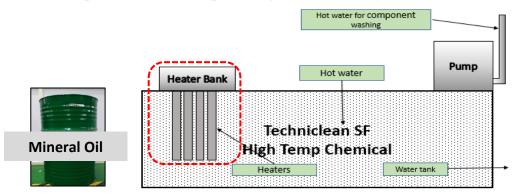
	#	Category	Project Description	Invest ment (₹In Lac)	Annual Saving (In Lacs KWH)	Annual Saving (In Lacs SCM)	Annual Saving (₹In Lac)
			Energy Consumption reduction by elimination of Heater in washing machines through introduction of Cold cleaning agent working on ambient temperature	0.00	2.17		24.46
		05	Energy use optimization by MEE Plant running days reduction from 17 days to 8.5 days reducing power and fuel consumption	0.00	0.84	0.83	52.10
			Air Compressor Energy Efficiency improvement through Harmonics & Noise effect losses reduction with the implementation of Elesol Plates in the compressor	5.04	0.37		2.98
	4	Energy use Optimaization	Energy use optimization by mode 4 implementation in Mitsubishi A series VFD	0.00	0.36		2.34
_		Energy Efficiency	Cooling Tower Pump Efficiency improvement by implementing Pressure based operation control and consequently elimination of one pump running.	0.50	0.33		2.65
	nı	Energy use Optimaization	Energy use optimization through weld shop oxygen bank running by utility compressor	0.00	0.23		1.50
		Energy Efficiency	Energy consumption reduction though paint shop FDV running hrs. reduction by timer installation	0.02	0.21		1.37
	8	Energy Consumption	Energy consumption reduction in engine assembly washing machine by vacuum pump elimination	0.00	0.18		1.17
			Energy Efficiency improvement in weld shop by temperature sensor implementation in cooling tower and interlocking with fans	0.25	0.17		1.07
	11	Energy Efficiency	Energy Efficiency improvement of Hot water generator by setting burner set point from 76 °C to 73 °C	0.00	0.00	0.15	4.91
	10	0,0	Energy Use optimization by non- working day Solar utilization enhancement by changeover of MLTP-4 to MLTP-5 on every non- working day	0.00	0.12		1.00

Top Projects identified in the last 3 years

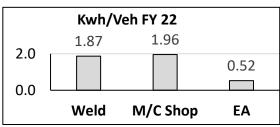
Energy Saving projects implemented in last three years

Top Projects

#	Category	Project Description	Invest ment (₹In Lac)	Annual Saving (In Lacs KWH)	Annual Saving (In Lacs SCM)	Annual Saving (₹In Lac)
	Energy Efficiency	Energy Efficiency Improvement by Magnetic Resonator installation on hot box chamber of PBRO to reduce natural gas consumption reduction by 10%	8.00	0.00	0.10	6.40
12	Energy Efficiency	Energy Efficiency by installing Low CFM air compressor for utilization during non working day	0.00	0.10		0.66
1 <	Energy Use optimization	Energy use optimization of motor through Compressed air generation pressure reduction from 7 bar to 6.7 bar	1.5	0.97		6.3
1 4	Energy Use Optimization	Energy use optimization through interlocking of Exhaust fan with painting robot to eliminate energy loss during non-production time	0.00	0.09		0.59
15	Energy Use	Energy use optimization by elimination of one Pump at ETP and soft water transfer pump though line modification	0.00	0.08		0.63
	Energy Efficiency	Energy Efficiency Improvement by providing VFD on Garden & Clarifier Pump and Filter Feed Pump at WTP-2	0.50	0.08		0.51
	Energy Efficiency	Energy Efficiency improvement by installation of Temp. sensor in ESS-3 & interlocking with exhaust fan	0.50	0.07		0.48
1 ×		Energy Efficiency Improvement by pressure switch installation in place of mechanical switch in Fire Electrical Pump	0.09	0.03		0.20
19		Energy Use optimization by non- working day Solar utilization enhancement by changeover of MLTP-2 to MLTP-3 on every non- working day	0.00	0.02		0.14
20	Renewble Energy	Renewable energy utilization by implementation of Hybrid Solar panel leading saving of 25-55% of AC power consumption	2.50	0.02		0.14


Innovative Project

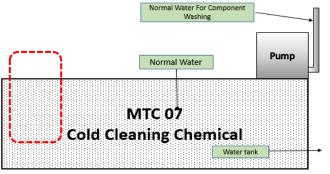
Top Projects identified in the last 3 years



Project: Energy consumption reduction by elimination of heaters in washing machines by introducing a cold cleaning agent working at ambient temperature

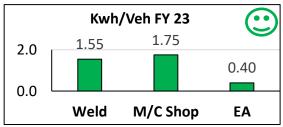
Background: Electric Heaters were used for solvent temperature @60°C resulting in high energy consumption of 200kwh/day. There are 7 nos. washing machine installed in weld shop, machine shop & engine assembly

Coolant used - Mineral Oil Heaters Used - 30 KW Washing temp – 50-60 °C Millipore Specs – 3 to 4 mg



Project Concept: Introduction of cold cleaning agent considering of all quality parameters for cleaning components which replaced 30 kw Conventional Heaters system in Washing machine.

Major Activity: Concept finalization → Testing and trial of various chemical→Approval→Ordering→Validation



Coolant used -Natural **Polymer**

Heaters Used - Eliminated Washing temp – Ambient Millipore Specs - 3 to 4 mg

Benefits:

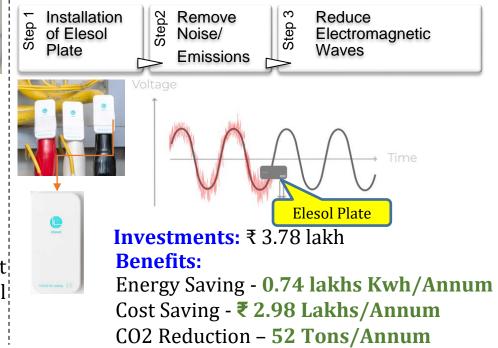
Energy Saving - 2.17 lakhs Kwh/Annum **Cost Saving - ₹ 39 Lakhs/Annum**

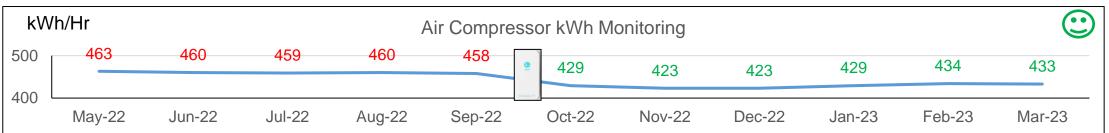
CO2 Reduction - 153 Tons/Annum

Heater Failure phenomena Eliminated

Energy saved 2.17 Kwh lakh/Annum resulting 18% Energy Consumption reduction in production Area

Project: Air Compressor Energy Efficiency Improvement through Harmonics and Noise Effect Losses Reduction with the Implementation of Elesol Plates

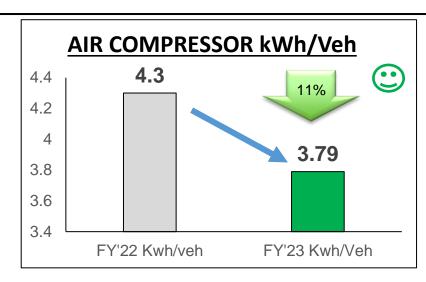

Background:

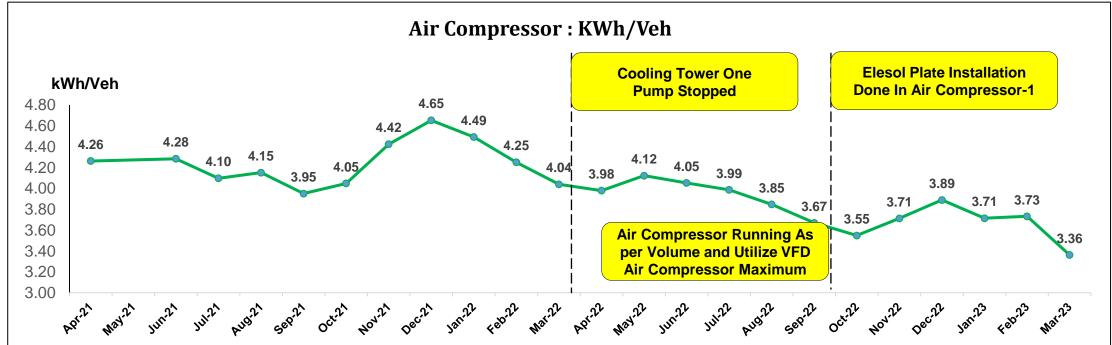

As per the energy review, air compressors are SEU equipment for utilities. Air compressor power consumption is 458 kWh/hr on full load, and the compressor has more than 8% harmonic voltage distortion factor.

Project Concept: Elesols technology attenuates the amount of Harmonic and electromagnetic fluctuations in electrical current that are originated within transmission line and breaker boxes.

The presence of harmonics in electrical system means that current voltage are distorted and deviate from sinusoidal wave form incurring in extra energy cost.

Major Activity: Concept finalize → Testing and trial of various chemical → Approval → Ordering→ Validation→ Horizontal Deployment

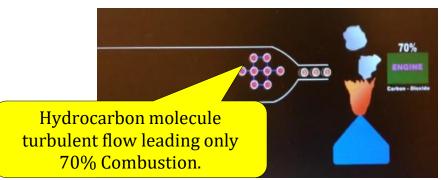

Energy saved 0.74 lakh Kwh/Annum resulting 6% Energy Consumption Reduction in Air compressor



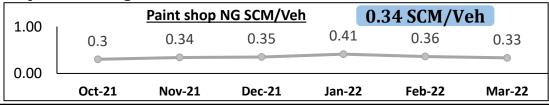
Project: Energy Saving project for All five Air Compressors

Project Implemented:

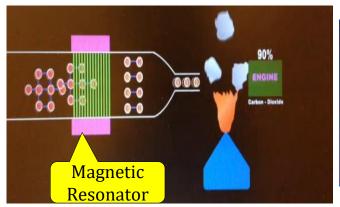
- 1. Elesol plate Installation in Air Compressor -1: 29kwh/Hr Energy saving
- 2. Cooling tower Water pump numbers optimize by Interlocking water pressure 120 kWh/day
- 3. Air Compresssor Load Mangement as per Production plan
- 4. Cooling tower Fan Interlocking as per Temperature requirement



Energy saved 3.69 Lakh Kwh /Annum resulting 11% Energy Consumption Reduction in All Air compressors


Project: Energy Efficiency Improvement by Magnetic Resonator installation in Paint Shop Oven gas burner for natural gas consumption reduction

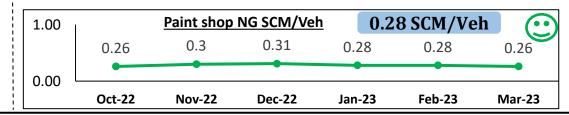
Background: Natural Gas Holds 80% of the consumable cost of the paint shop. Start-up time of Paint Shop is high (1.25 hrs.) NG consumption is 0.34 SCM/Veh which is high.



Project Concept:

- When a fluid or gas passes through a strong external magnetic field, the magnetic moment of the molecular clusters occurs. The Hydro-carbon clusters show time-fluctuating dipole properties. The time period of Time fluctuating dipole clusters of Hydro carbon fuel is expanded.
- After Magnetic resonator installation, magnetic interaction of Magnetic resonators & Polarization of hydro-carbon fuel takes place leading to 90% of effective combustion.

Major Activity: Concept finalize → Testing and Trial → Approval → Ordering → Validation → Horizontal Deployment

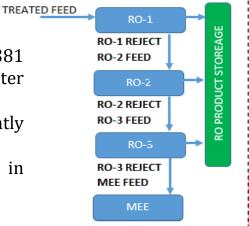


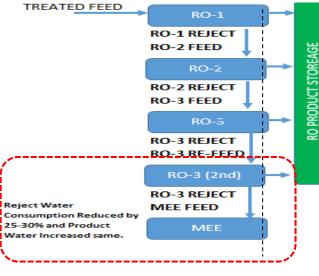
Investments: ₹ 3 lakh

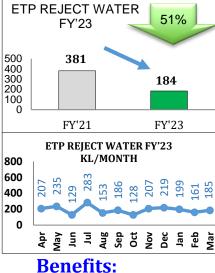
Benefits:

Energy Saving - 0.42 lakhs SCM/Annum
Cost Saving - ₹ 10.19 Lakhs/Annum
CO2 Reduction - 94 Tons/Annum
18% Fuel Consumption Reduction

Energy saved 0.42 Lakh SCM/Annum resulting 18% Fuel Consumption Reduction in Paint shop




Project: Energy Efficiency Improvement of MEE Plant(ZLD) by optimizing Running Days and reject


water reduction

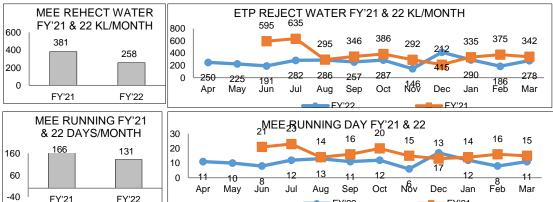
Background:

- Reject water generation is high 381 KL/Month & Boiler Condensate Water 2 KL/Day
- **❖** Calandrai Tube Frequently are clogged so Feed is very less
- ❖ MEE Running Day 17 days/Month in FY'21

Investments: ₹ 0.77 lakh

MEE RUNNING

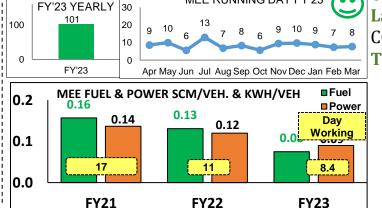
Energy Saving-0.39lakh **SCM/Annum**


0.38 Lakh Kwh/Annum

Cost Saving - ₹27

Lakhs/Annum

CO2 Reduction - 124


Tons/Annum

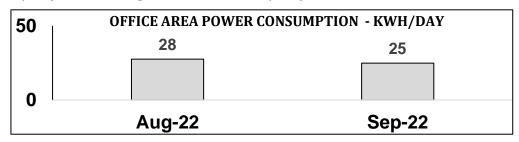
Project Concept: Reduce Reject water generation by in-house 4th stage RO creation by pipeline modification resulting in 25%-30% reject water reduction

Introduction of antiscalant chemicals for increasing the feed flow of the MEE Plant.

By doing all the planned activities, MEE Feed improved from 20 to 24

MEE RUNNING DAY FY'23

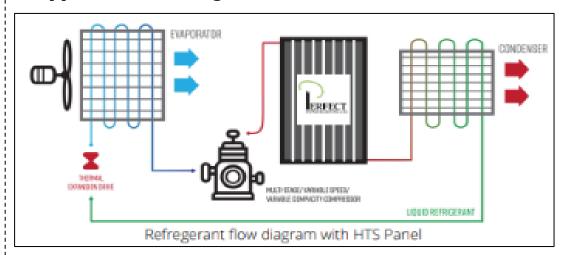
Energy saved 0.39 Lakh SCM/Annum&0.39 lakh Kwh/Annum resulting 53% Power&Fuel Consumption reduction in MEE

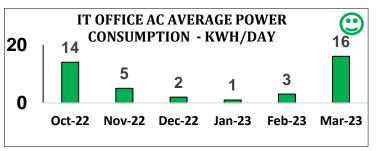


ENCON Project

Project: Energy Consumption Reduction of VRV AC by Introduction of Hybrid Thermal Solar Panel

Background:


HVAC Energy Consumption was the major guzzler for office areas. Office AC Which a Capacity of 10Tr and Power Consumption is 26 kwh/day & running Hrs was 10hrs/Day


Project Concept:

- Refrigerant leaves the compressor after heat and pressure is increased.
- Additional heat and pressure are added in the solar thermal panel using radiant energy from the sun.
- The refrigerant is delivered to condenser at designed pressure & and temperature.
- In this way, the compressor operates at a lower stage/speed, reducing the electrical energy needed to operate the compressor at full capacity.
- HTS panel implementation increases refrigerant pressure and temperature by using solar energy and | Cost Saving - ₹ 0.17 Lakhs/Annum reduces compressor loading.

Major Activity: Concept finalize → Testing and trial →Approval→Ordering→Validation→

Investments: ₹ 2.25 lac

Benefits:

Be the Future of Mobility

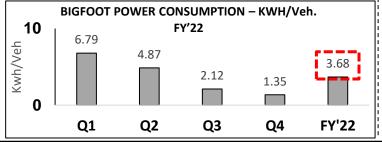
Energy Saving - 0.20 lakhs Kwh/Annum CO2 Reduction - 12 Tons/Annum

Energy saved 0.20 Lakh Kwh/Annum resulting 30% Energy Consumption in IT Office VRV

Project: Energy Consumption Reduction and energy efficiency Improvement of Bigfoot system

Background:

Hall Temperature Setting was on 25°C and Fresh Air Dampers Close 100% (During Summer & Winter) resulting in higher Chiller Running Hours

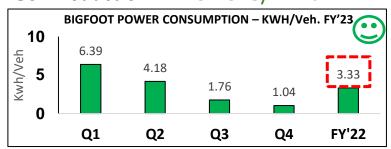

All Shutter (8 Nos.) On Manual Mode so Every Time opens resulting Heat Loss From there

Bigfoot SCADA is the proprietor part of OEM(USA) and the editable option has not been given to us So we cannot do Scheduling as per Our Requirement Due to that Power Consumption also Increased

Project Concept:

Reduce Set Point up to 27°C of Hall Temperature and Utilize Fresh Air Damper in 1st Shift & 2nd Shift.

All shutters put it on Automatic ON/OFF Mode Developed New software for the User Friendly Operation by a local



Investments: ₹ 9.5 lac for Software Loacalization

Benefits:

Supplier

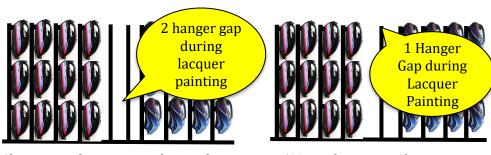
Energy Saving – 2.49 lakhs Kwh/Annum
Cost Saving - ₹ 19.95 Lakhs/Annum
CO2 Reduction – 176 Tons/Annum

Energy saved 2.49 Lakh Kwh/Annum resulting 9.35% Energy Consumption reduction in Bigfoot System

Project: Energy Consumption Reduction of Paint shop through TPM Implementation

To reduce Setup and adjustment loss, Quality defect & rework loss and Minor stoppage and Idling loss in Paint Shop.

Quality defect and Rework loss Elimination:



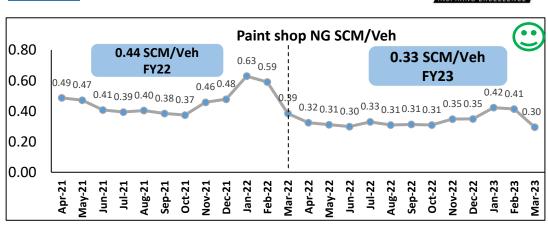
Heavy Paint deposition on wagon sprocket and hammerlock plate led to wagon rotation not ok phenomenon leading to defect

Deep cleaning of the complete wagon led to a reduction in indexing Not OK phenomenon elimination

Setup & Adjustment loss:

Changeover loss is more during the Program change

50% Reduction in Changeover frequency


Minor stoppage and Idling loss:

Frequent Cleaning of CO2 Pipe and Nozzle by stopping line (4-5 times/day) and Deep cleaning once/week Deep Cleaning frequency increased to twice/week

Cleaning frequency increased from once/week to twice/week led to reduce the paint drop issue

Results

Energy saved 0.79 Lakh SCM/Annum resulting 25% Fuel Consumption reduction in Paint shop

Project: Plant Lighting Energy Consumption reduction through technological improvements

Background:

Lighting Power was 1.76 kWh/Veh in FY22 and in overall power consumption, lighting load contribution is 7.4%. Non-Production Area Lighting load contribution is More than 60%

Project Concept:

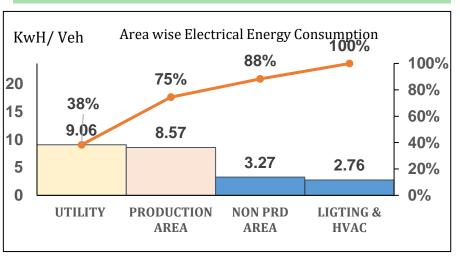
Optimization of Lighting load by technological Improvement

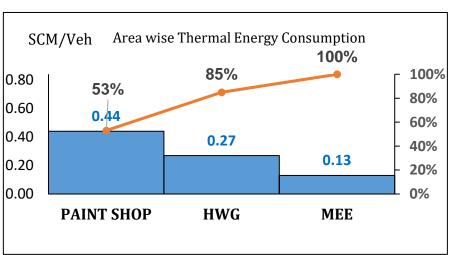
- Timer base Control in All Street lights and high mast light
- Motion sensor with CLIPSAL Controler to Control Office lighting power
- Introduce GOC in Non-Production Area (Dispatch)

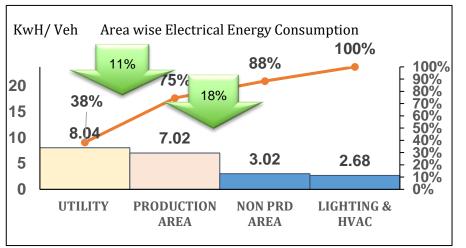
CLIPSAL OFFICE LIGTING CONTROLLAR

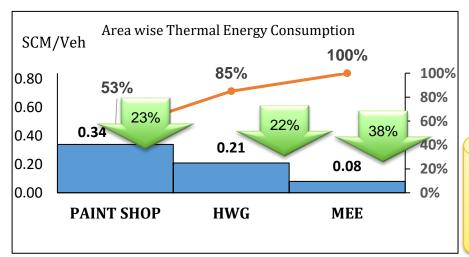
GOC fixed at dispatch area lighting load control

Benefits:


Energy Saving – 1.28 lakhs Kwh/Annum
Cost Saving - ₹ 10.27 Lakhs/Annum
CO2 Reduction – 90 Tons/Annum


Energy saved 1.28 Lakh Kwh/Annum resulting 10% Power Consumption reduction in Lighting


Energy Saving projects Results


Energy consumption: FY22

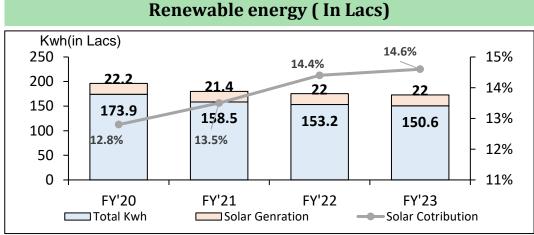
Energy consumption: FY23

Major projects
Identified based on
Energy
Consumption in
FY24:

- Paintshop
- Weld shop
- Hot water generator
- MEE

More focus is on Renewable Hybrid Energy Sources Implementation

After Improvements in various section identified at the start of FY23 has impactful results at the end of FY23. This is not only an improvement glimpse but also a way forward for FY24 and similarly projects has been identified for FY24.


List of Major Encon project planned in FY 2023-24

#	Category	Project Description	Annual Saving (In		Investment	Cost Saving	ROI
11	category	Troject Description	Electricity kWh	Thermal Kcal	In Million	In Million	In Month
1	Renewable Energy	Introduction of Renewable hybrid power (wind + solar) to increase the renewable energy utilization from 12 % to 63 %.	9.0	0.00	0	9	0
2		Renewable energy utilisation enhancement through installation of 100 KWP Solar system by 400 kWh	0.07		2	0.58	3.5
3		Energy Efficiency Improvement by batch wise production of Lacquer and sheet metal parts in the paint shop	0.04	330	0	2.35	0.0
4		Washing machine Energy e fficiency Improvement by Cold Cleaning Chemical usage in place of Heaters in remaining shops machines	0.01		0.05	0.10	0.5
5	Energy Consumption	Bigfoot(HVAC) energy consumption reduction by Shift Optimization(A+B to A+G)	0.07		0	0.53	0.0
6		Energy Consumption reduction in Weld Shop Area FDV through Running Hours Optimization by Installing Damper	0.01	0.00	0.35	0.05	7.3
7		AC Energy Efficiency Improvement by Introduction of Air tron Device working on Room Temperature feedback and reduction of AC running Hours	0.09	0.00	0.1	0.72	0.1
8		VRV AC(Engine Assembly) 25-30% Energy Consumption Reduction by Utilisation of Renewable Energy through the Solar Thermal panel	0.01		0.5	0.07	5.0
9		Energy consumption reduction in Chemical Room Exhaust Fans through Running Hours (24hrs to 6hrs) reduction by timer Base Operation	0.00		0.005	0.01	0.4
10		Hot water generator 5% Fuel Consumption optimzaiztion by Installtion of magnetic Resonator at Fuel supply line		33.40	0.34	0.21	1.4
11	0,5	MEE Fuel 5% Fuel Consumption optimzaiztion by Installtion of magnetic Resonator at Fuel supply line		16.70	0.35	0.21	1.9
		Total Saving	9.29	0.05	3.695	13.82	

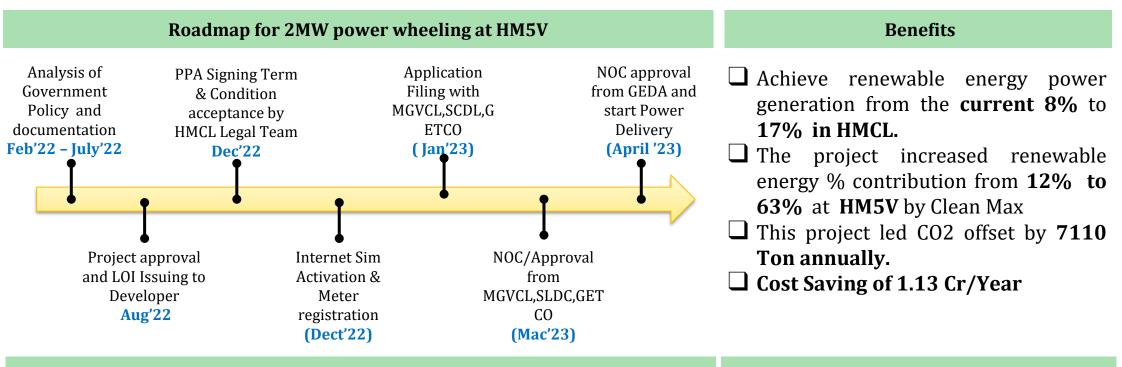
Planned Project With Expected Saving 1398 kWh/day In FY24

On Site Renewable Energy										
Year	Technology	Installed capacity (Mw)	Solar generation (In million kwh)	% of overall electrical energy consumption						
FY 2020-21	SOLAR	1.782	2.144	13.52						
FY 2021-22	SOLAR	1.782	2.202	14.37						
FY 2022-23	SOLAR	1.782	2.197	14.59						

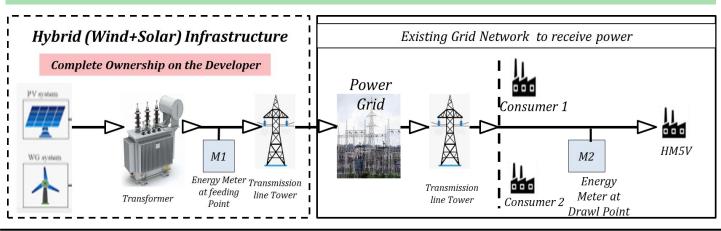
4000 kWh Saving/Annually

HTS Panel For the VRV 3000 kWh Saving/Annually

64 nos. Natural Air Ventilator in WTP,ETP,HWG & Air Compressor Area

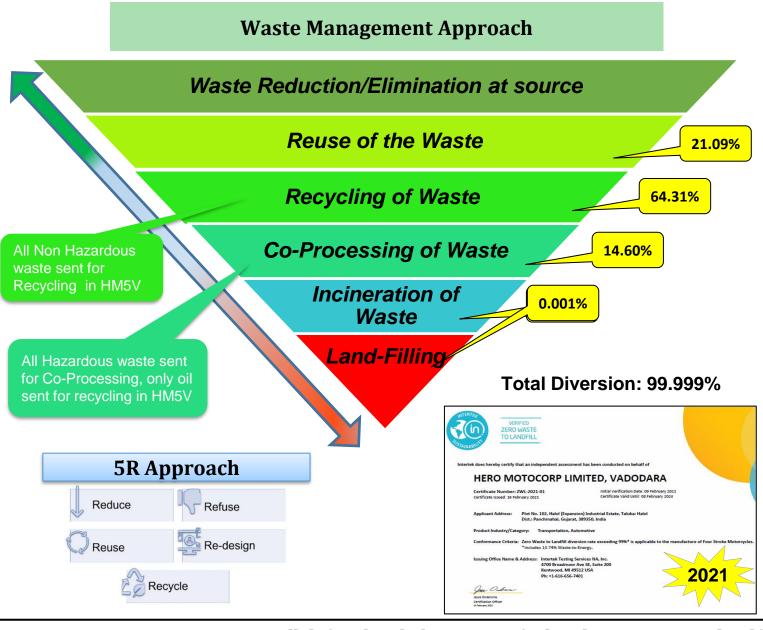


50 Nos. Solar Light Installed 5800 kWh Saving/Annually


With an Installed solar generation capacity of 1.782 MW, We are enhancing solar contribution in utilization and also improvements have been made for efficiency improvement/.

Utilization of Renewable Energy sources

Concept of Hybrid (Wind + Solar) Power Wheeling


Offsite Renewable Energy

	OFFSITE RENEWBALE ENERGY									
Year	Tech.	Installed capacity (Mw)	Kwh generatio n (In million kwh)	% overall electrical energy consumpti						
FY 24	Hybrid (Wind + Solar)	2	9.0	63%						

With the implementation of Hybrid power in FY24, HM5V increased our renewable energy contribution from 12% to more than 60 %. This project led CO2 offset by 7110 Ton annually

Waste utilization and management

Sewage Treatment Plant
Treatment Capacity: 200 KLD

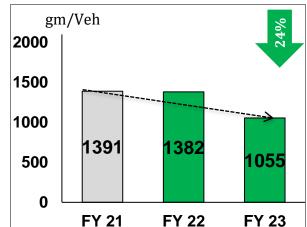
Multi Effect Evaporator Treatment Capacity: 30 KLD

Effluent Treatment Plant Treatment Capacity: 400 KLD

Waste management process is well defined and plant is certified with Zero waste to landfill and plant is having well established facilities of STP, ETP and plant is Zero liquid discharge plant.

Waste utilization and management

Different types of Waste generated in HM5V


Paint Sludge	Aluminum Scrap
ETP Sludge	Steel Scrap
MEE Sludge	Plastic/Packing Scrap
Phosphate Sludge	Empty Drums (MS & Plastic)
Grinding & Honing Sludge	Papers
Contaminated PPEs	Wooden scrap
Used Oil	Accidental Tyre& Tube Scrap
Horticulture Waste	Used Grinding Wheel Scrap
Food Waste	Used Cleaner Scarps in Drums
E-Waste	Buffing Wheel Scrap
Bio-Medical Waste	Copper Scrap
Battery Waste	Brass Scrap
Organic Sludge (STP)	

Hazardous

Non-Hazardous

Other

Non- Hazardous Waste Generation

Kaizen for Waste Reduction

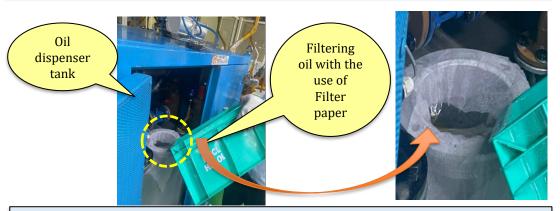
Material Saved by Packaging Improvement in Engine Storage

Wooden box packing

Usable Metal Pallet packing

Wastage Saving 51138 Kg/Year

Awareness & Training Regarding Waste Reduction 3 R Concept



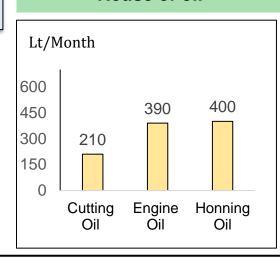
Waste generation is in reducing trend and various improvements and awareness session carried out to reduce waste in the plant.

Waste utilization and management

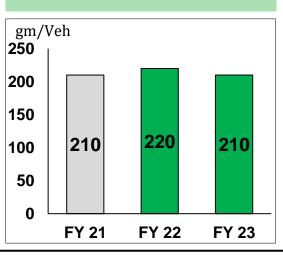
Reuse of Oil (Engine Oil, cutting oil cut945, Honing Oil)

Reuse of engine oil after filtration which is collected in rework area from dismantled engine.

Gravitational oil extraction and chip centrifuge used to extract cutting oil from chips generated from gun drill Machine



Oil extracting machine installed in Machine shop in order to extract and reuse oil from components after Honing

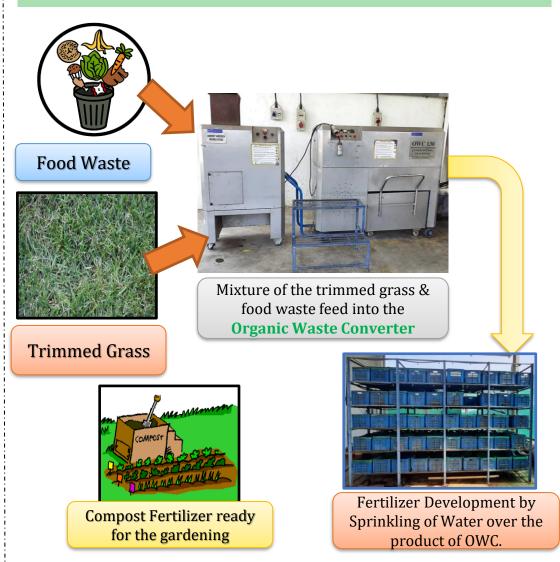


Reuse of oil

Hazardous Waste Generation

Improvements done in reduction of Hazardous waste and utilization.

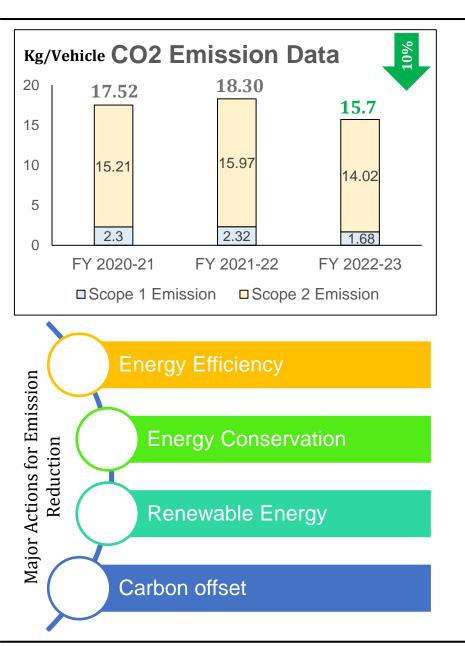
In-House Fertilizer Preparation from Trimmed Grass of Garden and Leaves of Trees:



Co-Processing of Hazardous Waste

Cement Resource Fuel) **Industry**

Food & Horticulture Waste Management



Different Waste utilization techniques for In-House compost making and co-processing of Hazardous waste with Cement Industries.

(Alternate

GHG Inventorisation

Scope 3 Emission

Most of Scope 3
Emission during
the use phase of
our vehicle at
Customer

Life cycle assessment studies on major vehicle platforms.

30-35 g/km * of carbon emissions are generated in the use phase.

This is low due to our highly fuelefficient vehicles.

* For this calculation, we assume that each vehicle travels 15,000 km per year and is used for 10 years.

Key Steps Undertaken

Successfully transition to BS VI

100% Domestic

Fuel Efficient Technologies

Accelerating production of EVs

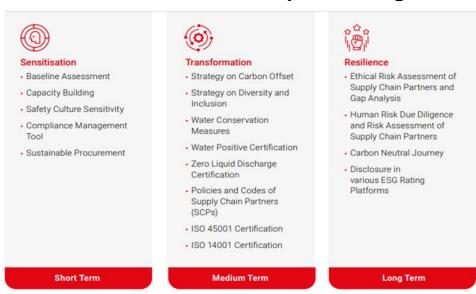
Started in HM6T

Optimizing Manufacturing processes

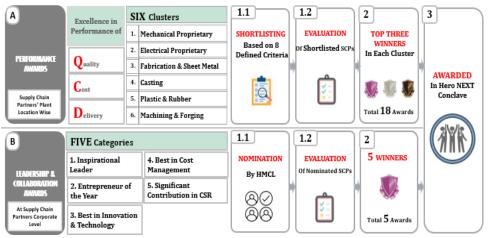
RCT Projects

Renewable energy

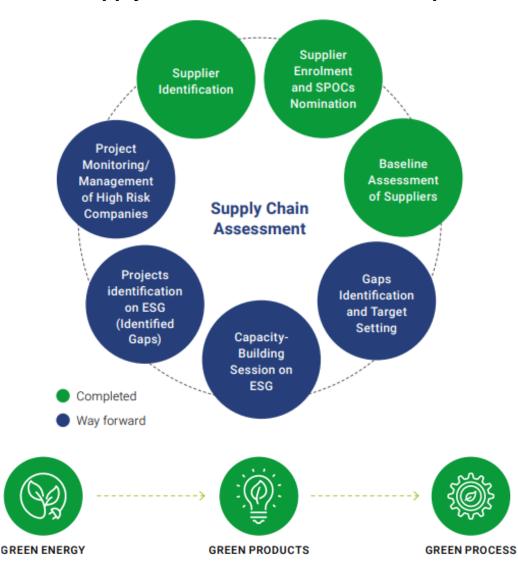
Hybrid


Reducing waste & Improving efficiency

CO2 emissions have been reduced through the years and major actions taken for Scope 1 & Scope 2 reduction. Scope 3 is carried out centrally and key steps undertaken for improvement.



Green Supply Chain Management


Sustainable Partner Development Program

Hero NEXT Supply Chain Partners (SCP) Award

Supply Chain Assessment Roadmap

Sustainable Partner development program carried out with Supplier and Dealers for ESG assessment and improvement.

Green Initiatives @ AGI, Halol

Stack height of DG set commissioned at 30 meters against std. requirement of minimum 22 meters for cleaner surrounding air.

Green Initiatives @ Satyam, Halol

#	Energy Savings Project Implemented in FY23
1	Seal Flush motor controlled by VFD because its valve throttle.
2	AAHM Air washer motor controlled starter so manually on/off and lunch time sometimes wastage power due to delay switching.
3	Press shop toilet light and exhaust fan continuous on
4	IOCL pit Submersible frequently winding burn
5	At Pantry room Ceiling Fan & lights Mostly time ON because Manually ON/Off.
6	Drinking RO antiscalent Dosing pump running continuous so, energy and chemical wastage with frequently pump issue
7	STP blower motor run via starter so motor run full speed so current taken high and starting time belt damages chances available.
9	Paint shop PT line light & fan on/off by manually so after production completed operator do not off light and fan

Total 0.29 Lacs kWh Saving

Power Wheeling at Gujarat Suppliers

Power V	Wheeling: Sustainability initiative acro	oss supp	ly chain	partner of I	HM5V in	Gujarat
Sr. No	Company Name	Voltag e (kV)	CD (KVA)	Avg. monthly Consumpti on (kwh)	Solar Installe d (KWp)	Avg. Solar Monthl y (kwh)
1	SUNBEAM LIGHTWEIGHTING SOLUTIONS PVT LTD , Halol	11	3,000	7,19,895	NA	NA
2	ROCKMAN Industries ltd , Varodara	11	2,900	11,00,000	NA	NA
3	BANCO GASKETS (INDIA) LIMITED Gambusar Varodara	11	1,650	4,75,000	NA	NA
4	FCC CLUTCH INDIA PVT LTD Sanand ahemadabad	11	1,600	1,68,097	543	58,759
5	AG INDUSTRIES Halol	11	1,300	2,80,000	88	9,600
6	SATYAM AUTO COMPONENTS PVT LTD ,Halol	11	1,000	2,46,747	NA	NA
7	VARROC ENGINEERING LTD Halol	11	1,000	1,65,000	NA	NA
8	AUTOFIT PVT. LTD. Halol	11	200	44,000	NA	NA
9	NAPINO AUTO & ELECTRONICS LTD, HALOL	11	100	11,820	NA	NA
10	RICO AUTO IND . LTD. HALOL	11	100	4,864	NA	NA
11	BADVE ENG LTD HALOL	NA	NA	NA	NA	NA
11a	M/S SWAMI ASHIRWAD ENGIMECH P LTD (KWH)	11	500	1,38,991	NA	NA
11b	M/S EXIMIIUS AUTOCOMPS P LTD (KWH)	11	750	2,04,292	NA	NA
11c	M/S SWASTID ENGINEERING P LTD (KWH)	11	1200	2,59,855	NA	NA

14 suppliers Certified by HMCL & Sustenance being monitored

- AG Industry
- **❖** Autofit
- Badve Engineering
- **❖** SUD-CHEMIE
- ❖ FCC Clutch
- Rockman
- Polyrub

- Fag Bearings
- Bony Polymers
- Endurance
- Napino AutoSatvam Auto
- Sunbeam
- Varroc

Improvements done in local suppliers with the collaboration of HM5V team and certification by HMCL Team.

EMS System and other requirements

Energy Management System

Internal Audit & Management Reviews System

Reviews & Audits

Internal Reviews

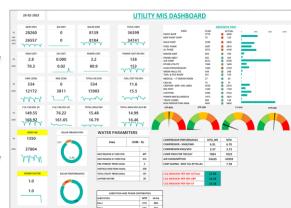
RCT Review

HODs Review

Internal Audits External Audit |Management Review|

Frequency

Fortnightly


Quarterly

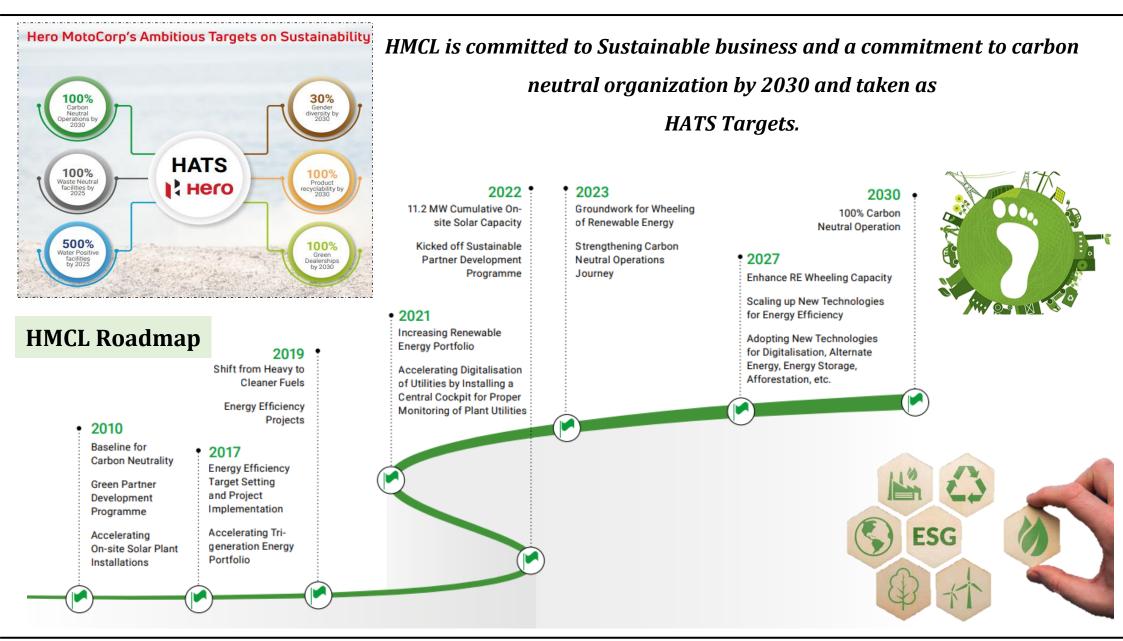
Half Yearly

Legal Compliance

Utility Daily Dashboard

Energy Review Status

#	Section	Last Energy Review (Month)	Energy Review Due in (Month)	Energy review Status	Nos of equipment's covered	Nos of SEU (energy guzzlers) Before	Nos of SEU (energy guzzlers) After	Action Plan preparation status
1	Utility	Sep'22	Sep'23	•	114	24	21	•
2	Al phase	Sep'22	Sep'23	•	79	6	2	•
3	Steel Phase	Sep'22	Sep'23	•	65	5	0	•
4	Engine Assembly	Sep'22	Sep'23	•	36	0	0	•
5	Frame Assembly	Sep'22	Sep'23	•	25	0	0	•
6	Paint Shop-1	Sep'22	Sep'23	•	58	37	9	•
7	Paint shop-2	Sep'22	Sep'23	•	58	18	18	•
8	Weld Shop	Sep'22	Sep'23	•	85	0	0	•


Energy Guzzlers Action Planning

	1																				On No	BENCHMANCE	
	него							SE	Us (Energy	Guzzle	rs) & Pl:	an for co	allection	of Ener	gy Data						effective date	05.04.3000	
	1000							OL.	on franci Pi	June	,	an ioi cc	meetion.	DI LIICE,	b) Date						Nov. No. 6 dide:	OL 1/MJ083	
74	odara Plant																				Then Number	code.	
SX	Sortion/ Process	Energy-review conduction month	SEE (Equipment) Name	SEE/Top Gazzler	Type of Energy	Earngy can		Equipment and for measurement (NYA Equate)	Collection status of measurement equipment	End period	Connected load of equp, in strap (low)		Total commission of shep in FT18-09 (last)/veh)	Sell Tokur(Eerk)T	EMPROM	PYZSTargei (Shop scion)	EaPt raise	Operator Name	Required Statio	Operational criteria related to SEUs		Static Factors affecting SEU	Next Energy review wheelste (in case of a staric factor change) +12 months
						Value	EGN																
1	Dility	je-12	Air Congressor s	101	Bettély	7519	Kel/May	Every runer	California Sect due date le 1512,2912	12 meris (3018-19)	500	2029	121	412	Kirdy'red:	3.98	1.07	Einded	1 GM 1 States and Shart deven SSP 5 Frequency Hostboding	Frequent Membering - 68 bit 2) Voluming Management - 6.3 — 6.5 mJune - 13 Booth Shakaning in Pacitive Prevents - 4) Booth Shakaning in Pacitive December - 6 Booth - 6 Boot	Litaning Your Litropany LPM Pan informers	1) Inniation Destitution o Natur 2) Sember of folloyiensed for Braduction	f 3m21
2	Distry	Jun-22	Air Congression 3	æı	Batidy	5547	Kel/day	Energy meter	California Sect due date in 15 2 2 2022	12 meets (3048-19)	250	2000	12.1	412	Kird, treb	3.86	8.84	Emirá	1 GM 1 States and State down SSP 3 Frequency Hostisting	Frequery Hoshtoring—Hi Hz Sinionly Hazarrement - 8.3 -6.5 m; loss Type - 1.5 m; loss of the Solarcing in Positive Disease. Sinionly - 1.5 m; loss of Hospitos Only socializing as per remaing few plan.	L Reming Noon 2 Programy 5 7M Plan Influences	Li lamintos Castificatios o Nator Silvaniar of thillingiansed for freeduction.	f 3m-23
3	Dility	jes-12	Miel	21	Satisfy	4947	Kel/day	Energy ratio	Californial Sect due date in 1512,2812	12 meth (2018-19)	337	27297	599	594	Start, hade	531	134	And	1.038 1.Statigued Sket-Senn-SSP 3.Enguezy Monketing	[] Tropusy Hosboring - 43 Hz [] Simily Hashin wanter - 6.1 ~6.5 m/se [] Booth Shikacking in Pacifive Pressum () Barthy and Baydone Only monitoring as per running for plan. 5.1 FM Ten Adventors	L. Raming Bours L. Property L. PH Plan Influence	1) Inministon Dantification o Natur 2) Number of shifts planned for Fraduction.	()=-21
	Dalley	Jun 22	Daller 4	101	Satisty	9000	Kelyllay	Energy meter	California' Next due date in 1512-2412	12 ments (3048-19)	887	3150	598	594	Kird, ted.	131	1.01	And	1.030 2. Seeing and State down SSP 3. Empany Montaining	1) Frequency Headmang - et He 2) Minority Headmann - 6.3 -6.5 m/dec 3) Booth Salancing in Positive Sweams 4) Booth Salancing in Positive Sweams 4) Startup and Steptime Only seculating as per remning law Swe	Litaning Scen Litanopsy 1.7M Plan influences	1) brokelos Cuestinatos o Nator 2) Sunder of dallo planned for Production	
8	Dility	Jes 22	Set water processor	981	Thermal Strengt	296	101/Sey	lia for min	California Sent due date la 1512-2522	12 month (2008-19)	1240	75	638	0.38	serse, Veds	9264					anizatio	n fo	
			MEE	41	Thermal Snergy	600	50K/Say	Eas flow meter	Cultivated: Next due date in 1512-2422	12 month (2018-19)	720									No.	ganizatio	Nor Sto	12

Robust Energy Management system and monitoring with base of improvement from energy review and SEUs action planning.

Net Zero Commitment as per Hero HATS targets and roadmap to achieve that.

 Propane to Natural gas conversion for Kitchen

Energy conservation projects in order to reduce power cons. By 450000 KWH/year.

• 1000 - Tree plantation

 Energy conservation projects in order to reduce power

renewable energy to 60%

 Vacuum distillation tech in stead of MEE.

FY 29-30

FY 23-24

FY 25-26

FY 26-27

FY 24-25

- Benefits of Hybrid power (wind) to increased the renewable energy used from 12 % to 63 %
 - Energy conservation projects in order to reduce power cons. By 450000 KWH/year.
 - 1000 Tree plantation
 - Solar water heater for kitchen.

Electrical Audit -External

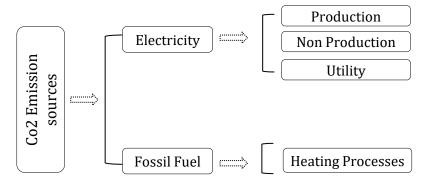
- Amendment of renewable energy to 60%
- Energy conservation projects in order to reduce power cons. By 450000 KWH/year.
- 1500 Tree plantation

Energy conservation projects in order to reduce power cons. By 450000 KWH/year.

- DG to gas conversion
- 2500 Tree plantation

cons. By 450000 KWH/year. Benefits from amendment of

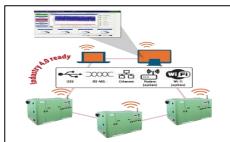
In line with Corporate roadmap, Plant roadmap to achieve Net zero commitment.



NET ZERO commitment

HM5V Carbon Emission Analysis, Roadmap & Actions Implemented

CO2 Emission Analysis



Machineries not utilized
High Losses
High Process c/s
High Consumption
Under utilized renewable
energy
Machine running hours not
optimization
Less green belt

Major ENCON Highlights

100% LED Light usage in plant

Intelligent Flow Control for Air Consumption Reduction

Major Actions

Auto Drip Irrigation System

Dense Forest through Miyawaki Technique

Power Wheeling

Be the Future of Mobility

100% IE-3 & 4 Motor

Central HVAC System with Automatic Control

Committed to fulfil SDG Goals

Emission analysis and Steps to achieve carbon-neutral operations

Awards & Recognition

Platinum Award in IGBC Green Factory Building

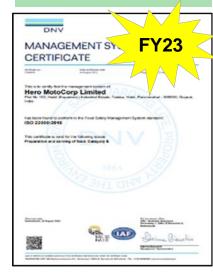
Zero Waste to Landfill Certification

Water Positive Certification

IMS Certification in 2017-18 (Recertification in Apr'21)

ISO 9001:2015

ISO 14001:2015


ISO 45001:2018

ISO 50001:2018

ISO 22000:2018

Eat Right Campus

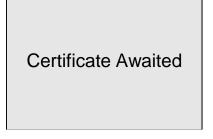
Highlights of major awards and accolades plant is certified with.

CII Participations of HM5V in FY23 & FY24

18th
CII
Circle
Competition

46th
CII National
Kaizen
Competition

8th
CII National
Competition on LowCost Automation


Platinum- JH Circle

Gold- KK Circle

Silver Award

Platinum Award

Gold- Productivity
Improvement

Gold- Delivery Improvement

Journey Continues...

Highlights of major awards and participation by plant team in different CII events

Thank You

Q&A Session